Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(23): 2652-2665.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37683631

RESUMO

The pituitary is the master neuroendocrine gland, which regulates body homeostasis. It consists of the anterior pituitary/adenohypophysis harboring hormones producing cells and the posterior pituitary/neurohypophysis, which relays the passage of hormones from the brain to the periphery. It is accepted that the adenohypophysis originates from the oral ectoderm (Rathke's pouch), whereas the neural ectoderm contributes to the neurohypophysis. Single-cell transcriptomics of the zebrafish pituitary showed that cyp26b1-positive astroglial pituicytes of the neurohypophysis and prop1-positive adenohypophyseal progenitors expressed common markers implying lineage relatedness. Genetic tracing identifies that, in contrast to the prevailing dogma, neural plate precursors of zebrafish (her4.3+) and mouse (Sox1+) contribute to both neurohypophyseal and a subset of adenohypophyseal cells. Pituicyte-derived retinoic-acid-degrading enzyme Cyp26b1 fine-tunes differentiation of prop1+ progenitors into hormone-producing cells. These results challenge the notion that adenohypophyseal cells are exclusively derived from non-neural ectoderm and demonstrate that crosstalk between neuro- and adeno-hypophyseal cells affects differentiation of pituitary cells.


Assuntos
Neuro-Hipófise , Camundongos , Animais , Peixe-Zebra , Placa Neural , Ácido Retinoico 4 Hidroxilase , Hormônios
2.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37183548

RESUMO

The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.


Assuntos
Doenças da Hipófise , Adeno-Hipófise , Gravidez , Feminino , Camundongos , Animais , Tireotropina/metabolismo , Hipófise/metabolismo , Fatores de Transcrição/metabolismo , Doenças da Hipófise/metabolismo , Imuno-Histoquímica , Adeno-Hipófise/metabolismo , Fatores de Transcrição SOXB2/metabolismo
3.
Am J Med Genet A ; 188(9): 2701-2706, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792517

RESUMO

Biallelic RNPC3 variants have been reported in a few patients with growth hormone deficiency, either in isolation or in association with central hypothyroidism, congenital cataract, neuropathy, developmental delay/intellectual disability, hypogonadism, and pituitary hypoplasia. To describe a new patient with syndromic congenital hypopituitarism and diffuse brain atrophy due to RNPC3 mutations and to compare her clinical and molecular characteristics and pituitary functions with previously published patients. A 20-year-old female presented with severe growth, neuromotor, and developmental delay. Her weight, height, and head circumference were 5135 gr (-25.81 SDS), 68 cm (-16.17 SDS), and 34 cm (-17.03 SDS), respectively. She was prepubertal, and had dysmorphic facies, contractures, and spasticity in the extremities, and severe truncal hypotonia. There were no radiological signs of a skeletal dysplasia. The bone age was extremely delayed at 2 years. Investigation of pituitary function revealed growth hormone, prolactin, and thyroid-stimulating hormone deficiencies. Whole-exome sequencing revealed a novel homozygous missense (c.1328A > G; Y443C) variant in RNPC3. Cranial MRI revealed a hypoplastic anterior pituitary with diffuse cerebral and cerebellar atrophy. The Y443C variant in RNPC3 associated with syndromic congenital hypopituitarism and abnormal brain development. This report extends the RNPC3-related hypopituitarism phenotype with a severe neurodegenerative presentation.


Assuntos
Hormônio do Crescimento Humano , Hipopituitarismo , Hipotireoidismo , Atrofia , Feminino , Hormônio do Crescimento/genética , Homozigoto , Humanos , Hipopituitarismo/diagnóstico , Hipopituitarismo/genética , Hipotireoidismo/genética , Proteínas Nucleares/genética , Hipófise/anormalidades , Proteínas de Ligação a RNA/genética
4.
Genet Med ; 24(2): 384-397, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906446

RESUMO

PURPOSE: We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS: We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS: We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION: Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.


Assuntos
Hipopituitarismo , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Linhagem , Fenótipo , Insuficiência Ovariana Primária/genética , Prolactina/genética , Proteínas de Ligação a RNA/genética
6.
Cancers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805518

RESUMO

SOX2 is a transcription factor associated with stem cell activity in several tissues. In cancer, SOX2 expression is increased in samples from several malignancies, including glioblastoma, and high SOX2 levels are associated with the population of tumor-initiating cells and with poor patient outcome. Therefore, understanding how SOX2 is regulated in cancer cells is relevant to tackle tumorigenesis. The SOX2 regulatory region 2(SRR2) is located downstream of the SOX2 coding region and mediates SOX2 expression in embryonic and adult stem cells. In this study, we deleted SRR2 using CRISPR/Cas9 in glioblastoma cells. Importantly, SRR2-deleted glioblastoma cells presented reduced SOX2 expression and decreased proliferative activity and self-renewal capacity in vitro. In line with these results, SRR2-deleted glioblastoma cells displayed decreased tumor initiation and growth in vivo. These effects correlated with an elevation of p21CIP1 cell cycle and p27KIP1 quiescence regulators. In conclusion, our data reveal that SRR2 deletion halts malignant activity of SOX2 and confirms that the SRR2 enhancer regulates SOX2 expression in cancer.

7.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33574062

RESUMO

P27, a cell cycle inhibitor, is also able to drive repression of Sox2 This interaction plays a crucial role during development of p27-/- pituitary tumors because loss of one copy of Sox2 impairs tumorigenesis [H. Li et al., Cell Stem Cell 11, 845-852 (2012)]. However, SOX2 is expressed in both endocrine and stem cells (SCs), and its contribution to tumorigenesis in either cell type is unknown. We have thus explored the cellular origin and mechanisms underlying endocrine tumorigenesis in p27-/- pituitaries. We found that pituitary hyperplasia is associated with reduced cellular differentiation, in parallel with increased levels of SOX2 in stem and endocrine cells. Using conditional loss-of-function and lineage tracing approaches, we show that SOX2 is required cell autonomously in p27-/- endocrine cells for these to give rise to tumors, and in SCs for promotion of tumorigenesis. This is supported by studies deleting the Sox2 regulatory region 2 (Srr2), the target of P27 repressive action. Single cell transcriptomic analysis further reveals that activation of a SOX2-dependent MAPK pathway in SCs is important for tumorigenesis. Altogether, our data highlight different aspects of the role of SOX2 following loss of p27, according to cellular context, and uncover an unexpected SOX2-dependent tumor-promoting role for SCs. Our results imply that targeting SCs, in addition to tumor cells, may represent an efficient antitumoral strategy in certain contexts.


Assuntos
Carcinogênese/metabolismo , Neoplasias Hipofisárias/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinogênese/genética , Linhagem da Célula , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Endócrinas/metabolismo , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Domínios Proteicos , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/genética
8.
Development ; 143(13): 2376-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226320

RESUMO

Sox2 mutations are associated with pituitary hormone deficiencies and the protein is required for pituitary progenitor proliferation, but its function has not been well characterized in this context. SOX2 is known to activate expression of Six6, encoding a homeodomain transcription factor, in the ventral diencephalon. Here, we find that the same relationship likely exists in the pituitary. Moreover, because Six6 deletion is associated with a similar phenotype as described here for loss of Sox2, Six6 appears to be an essential downstream target of SOX2 in the gland. We also uncover a second role for SOX2. Whereas cell differentiation is reduced in Sox2 mutants, some endocrine cells are generated, such as POMC-positive cells in the intermediate lobe. However, loss of SOX2 here results in complete downregulation of the melanotroph pioneer factor PAX7, and subsequently a switch of identity from melanotrophs to ectopic corticotrophs. Rescuing proliferation by ablating the cell cycle negative regulator p27 (also known as Cdkn1b) in Sox2 mutants does not restore melanotroph emergence. Therefore, SOX2 has two independent roles during pituitary morphogenesis; firstly, promotion of progenitor proliferation, and subsequently, acquisition of melanotroph identity.


Assuntos
Linhagem da Célula , Hipófise/citologia , Hipófise/embriologia , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia , Animais , Contagem de Células , Proliferação de Células , Corticotrofos/citologia , Corticotrofos/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Melanotrofos/citologia , Melanotrofos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Morfogênese/genética , Fator de Transcrição PAX7/metabolismo , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo , Transativadores/genética , Transativadores/metabolismo
9.
J Mol Endocrinol ; 54(2): R55-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25587054

RESUMO

Significant progress has been made recently in unravelling the embryonic events leading to pituitary morphogenesis, both in vivo and in vitro. This includes dissection of the molecular mechanisms controlling patterning of the ventral diencephalon that regulate formation of the pituitary anlagen or Rathke's pouch. There is also a better characterisation of processes that underlie maintenance of pituitary progenitors, specification of endocrine lineages and the three-dimensional organisation of newly differentiated endocrine cells. Furthermore, a population of adult pituitary stem cells (SCs), originating from embryonic progenitors, have been described and shown to have not only regenerative potential, but also the capacity to induce tumour formation. Finally, the successful recapitulation in vitro of embryonic events leading to generation of endocrine cells from embryonic SCs, and their subsequent transplantation, represents exciting advances towards the use of regenerative medicine to treat endocrine deficits. In this review, an up-to-date description of pituitary morphogenesis will be provided and discussed with particular reference to pituitary SC studies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipófise/embriologia , Hipófise/metabolismo , Animais , Camundongos , Modelos Biológicos , Morfogênese/genética , Hipófise/anatomia & histologia , Hipófise/citologia , Células-Tronco/metabolismo
10.
Dev Biol ; 381(2): 491-501, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792023

RESUMO

The SRY-related HMG box transcription factor Sox2 plays critical roles throughout embryogenesis. Haploinsufficiency for SOX2 results in human developmental defects including anophthalmia, microphthalmia and septo-optic dysplasia, a congenital forebrain defect. To understand how Sox2 plays a role in neurogenesis, we combined genomic and in vivo transgenic approaches to characterize genomic regions occupied by Sox2 in the developing forebrain. Six3, a homeobox gene associated with holoprosencephaly, a forebrain midline defect, was identified as a Sox2 transcriptional target. This study shows that Sox2 directly regulates a previously unidentified long-range forebrain enhancer to activate Six3 expression in the rostral diencephalon. Further biochemical and genetic evidences indicated a direct regulatory link between Sox2 and Six3 during forebrain development, providing a better understanding of a common molecular mechanism underlying these forebrain defects.


Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Evolução Molecular , Proteínas do Olho/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Placa Neural/embriologia , Placa Neural/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo , Ativação Transcricional , Proteína Homeobox SIX3
11.
Cell Stem Cell ; 11(6): 845-52, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217425

RESUMO

The mechanisms responsible for the transcriptional silencing of pluripotency genes in differentiated cells are poorly understood. We have observed that cells lacking the tumor suppressor p27 can be reprogrammed into induced pluripotent stem cells (iPSCs) in the absence of ectopic Sox2. Interestingly, cells and tissues from p27 null mice, including brain, lung, and retina, present an elevated basal expression of Sox2, suggesting that p27 contributes to the repression of Sox2. Furthermore, p27 null iPSCs fail to fully repress Sox2 upon differentiation. Mechanistically, we have found that upon differentiation p27 associates to the SRR2 enhancer of the Sox2 gene together with a p130-E2F4-SIN3A repressive complex. Finally, Sox2 haploinsufficiency genetically rescues some of the phenotypes characteristic of p27 null mice, including gigantism, pituitary hyperplasia, pituitary tumors, and retinal defects. Collectively, these results demonstrate an unprecedented connection between p27 and Sox2 relevant for reprogramming and cancer and for understanding human pathologies associated with p27 germline mutations.


Assuntos
Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Fator de Transcrição E2F4/metabolismo , Embrião de Mamíferos/citologia , Elementos Facilitadores Genéticos/genética , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência/genética , Heterozigoto , Humanos , Camundongos , Fenótipo , Ligação Proteica/genética , Proteína p130 Retinoblastoma-Like/metabolismo , Fatores de Transcrição SOXB1/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/metabolismo
12.
Trends Endocrinol Metab ; 23(6): 261-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22436593

RESUMO

Recent advances in tridimensional (3D) tissue imaging have considerably enriched our view of the pituitary gland and its development. Whereas traditional histology of the pituitary anterior lobe portrayed this tissue as a patchwork of cells, 3D imaging revealed that cells of each lineage form extensive and structured homotypic networks. In the adult gland these networks contribute to the robustness and coordination of the cell response to secretagogs. In addition, the network organization adapts to changes in endocrine environment, as revealed by the sexually dimorphic growth hormone (GH) cell network. Further work is required to establish better the molecular basis for homotypic and heterotypic interactions in the pituitary as well as the implications of these interactions for pituitary function and dysfunction in humans.


Assuntos
Imageamento Tridimensional/tendências , Hipófise/embriologia , Hipófise/fisiologia , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Humanos , Camundongos , Hipófise/citologia , Adeno-Hipófise/citologia , Adeno-Hipófise/embriologia , Adeno-Hipófise/fisiologia , Transdução de Sinais/fisiologia
13.
Dev Cell ; 22(3): 585-96, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22421044

RESUMO

Septo-optic dysplasia (SOD) is a congenital brain anomaly that results in pituitary, optic nerve, and midline forebrain defects. The etiology of SOD is poorly understood, with the majority of cases being sporadic. In rare instances, SOD is caused by mutations in Sox2, Sox3, or Hesx1, but how this manifests in disease is not entirely certain. We demonstrate here that mouse embryos lacking Sonic hedgehog (Shh) in the prospective hypothalamus exhibit key features of SOD, including pituitary hypoplasia and absence of the optic disc. The hypothalamic source of Shh is required to maintain gene expression boundaries along the anteroposterior and mediolateral neural axes that are important for proper pituitary and eye development, respectively. We further reveal that Sox2 and Sox3 are dose-dependent regulators of Shh transcription that directly bind and activate a long-range Shh forebrain enhancer. These data indicate that reduced levels of Shh expression in the hypothalamus cause SOD.


Assuntos
Proteínas Hedgehog/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Displasia Septo-Óptica/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/embriologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Displasia Septo-Óptica/genética
15.
Dev Cell ; 21(3): 546-58, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21920318

RESUMO

In developing amniote embryos, the first epithelial-to-mesenchymal transition (EMT) occurs at gastrulation, when a subset of epiblast cells moves to the primitive streak and undergoes EMT to internalize and generate the mesoderm and the endoderm. We show that in the chick embryo this decision to internalize is mediated by reciprocal transcriptional repression of Snail2 and Sox3 factors. We also show that the relationship between Sox3 and Snail is conserved in the mouse embryo and in human cancer cells. In the embryo, Snail-expressing cells ingress at the primitive streak, whereas Sox3-positive cells, which are unable to ingress, ensure the formation of ectodermal derivatives. Thus, the subdivision of the early embryo into the two main territories, ectodermal and mesendodermal, is regulated by changes in cell behavior mediated by the antagonistic relationship between Sox3 and Snail transcription factors.


Assuntos
Gastrulação , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Gástrula/embriologia , Gástrula/metabolismo , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Linha Primitiva/embriologia , Linha Primitiva/metabolismo , Fatores de Transcrição da Família Snail
16.
Eur J Neurosci ; 32(12): 2053-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21143660

RESUMO

Stem cells/progenitors are being discovered in a growing number of adult tissues. They have been hypothesized for a long time to exist in the pituitary, especially because this gland is characterized by its plasticity as it constantly adapts its hormonal response to evolving needs, under the control of the hypothalamus. Recently, five labs have reported the presence of adult progenitors in the gland and shown their endocrine differentiation potential, using different in vitro assays, selection methods and markers to purify and characterize these similar cell populations. These will be discussed here, highlighting common points, and also differences. Thanks to these recent developments it is now possible to integrate progenitors into the physiology of the gland, and uncover their participation in normal but also pathological situations. Moreover, experimental situations inducing generation of new endocrine cells can now be re-visited in light of the involvement of progenitors, and also used to better understand their role. Some of these aspects will also be developed in this review.


Assuntos
Hipófise/citologia , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Transplante de Células , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Lactação , Proteínas do Tecido Nervoso/metabolismo , Nestina , Doenças da Hipófise/fisiopatologia , Hipófise/fisiologia , Neoplasias Hipofisárias/patologia , Gravidez , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia
17.
PLoS One ; 5(7): e11443, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20625432

RESUMO

Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report.


Assuntos
Hipopituitarismo/metabolismo , Integrases/genética , Integrases/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas do Tecido Nervoso/genética , Hipófise/metabolismo , Transgenes/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Hormônio do Crescimento/metabolismo , Hipopituitarismo/genética , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Transgênicos , Nestina , Prolactina/metabolismo , Regiões Promotoras Genéticas/genética , Radioimunoensaio , Ratos , Tireotropina/metabolismo , Transgenes/genética
18.
Endocr Rev ; 30(7): 790-829, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19837867

RESUMO

Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipófise/embriologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Hipotálamo/embriologia , Hipotálamo/fisiologia , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Hipófise/fisiologia , Hormônios Hipofisários/genética , Hormônios Hipofisários/fisiologia , Fatores de Transcrição/genética
19.
J Clin Endocrinol Metab ; 93(5): 1865-73, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285410

RESUMO

CONTEXT: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. OBJECTIVE: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. RESULTS: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit beta-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke's pouch, the developing anterior pituitary, and the eye. CONCLUSIONS: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-beta-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Olho/embriologia , Proteínas HMGB/fisiologia , Hipófise/embriologia , Prosencéfalo/embriologia , Fatores de Transcrição/fisiologia , Adolescente , Adulto , Criança , Proteínas de Ligação a DNA/genética , Anormalidades do Olho/etiologia , Anormalidades do Olho/genética , Feminino , Proteínas HMGB/genética , Humanos , Hipopituitarismo/etiologia , Hipopituitarismo/genética , Mutação , RNA Mensageiro/análise , Fatores de Transcrição SOXB1 , Transdução de Sinais , Fatores de Transcrição/genética , beta Catenina/fisiologia
20.
J Clin Invest ; 116(9): 2442-55, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16932809

RESUMO

The transcription factor SOX2 is expressed most notably in the developing CNS and placodes, where it plays critical roles in embryogenesis. Heterozygous de novo mutations in SOX2 have previously been associated with bilateral anophthalmia/microphthalmia, developmental delay, short stature, and male genital tract abnormalities. Here we investigated the role of Sox2 in murine pituitary development. Mice heterozygous for a targeted disruption of Sox2 did not manifest eye defects, but showed abnormal anterior pituitary development with reduced levels of growth hormone, luteinizing hormone, and thyroid-stimulating hormone. Consequently, we identified 8 individuals (from a cohort of 235 patients) with heterozygous sequence variations in SOX2. Six of these were de novo mutations, predicted to result in truncated protein products, that exhibited partial or complete loss of function (DNA binding, nuclear translocation, or transactivation). Clinical evaluation revealed that, in addition to bilateral eye defects, SOX2 mutations were associated with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, variable defects affecting the corpus callosum and mesial temporal structures, hypothalamic hamartoma, sensorineural hearing loss, and esophageal atresia. Our data show that SOX2 is necessary for the normal development and function of the hypothalamo-pituitary and reproductive axes in both humans and mice.


Assuntos
Proteínas de Ligação a DNA/genética , Anormalidades do Olho/genética , Proteínas HMGB/genética , Hipotálamo/anormalidades , Mutação , Hipófise/anormalidades , Transativadores/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Adulto , Animais , Criança , Feminino , Humanos , Lactente , Masculino , Camundongos , Fatores de Transcrição SOXB1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA